Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(32): e2207459119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914129

RESUMEN

Twinkle is the mammalian helicase vital for replication and integrity of mitochondrial DNA. Over 90 Twinkle helicase disease variants have been linked to progressive external ophthalmoplegia and ataxia neuropathies among other mitochondrial diseases. Despite the biological and clinical importance, Twinkle represents the only remaining component of the human minimal mitochondrial replisome that has yet to be structurally characterized. Here, we present 3-dimensional structures of human Twinkle W315L. Employing cryo-electron microscopy (cryo-EM), we characterize the oligomeric assemblies of human full-length Twinkle W315L, define its multimeric interface, and map clinical variants associated with Twinkle in inherited mitochondrial disease. Cryo-EM, crosslinking-mass spectrometry, and molecular dynamics simulations provide insight into the dynamic movement and molecular consequences of the W315L clinical variant. Collectively, this ensemble of structures outlines a framework for studying Twinkle function in mitochondrial DNA replication and associated disease states.


Asunto(s)
Microscopía por Crioelectrón , ADN Helicasas , Enfermedades Mitocondriales , Proteínas Mitocondriales , Multimerización de Proteína , ADN Helicasas/química , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN Helicasas/ultraestructura , Replicación del ADN , ADN Mitocondrial/biosíntesis , Humanos , Espectrometría de Masas , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Simulación de Dinámica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura
2.
Commun Biol ; 4(1): 849, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34239038

RESUMEN

Huntington disease (HD) is a neurodegenerative trinucleotide repeat disorder caused by an expanded poly-glutamine (polyQ) tract in the mutant huntingtin (mHTT) protein. The formation and topology of filamentous mHTT inclusions in the brain (hallmarks of HD implicated in neurotoxicity) remain elusive. Using cryo-electron tomography and subtomogram averaging, here we show that mHTT exon 1 and polyQ-only aggregates in vitro are structurally heterogenous and filamentous, similar to prior observations with other methods. Yet, we find filaments in both types of aggregates under ~2 nm in width, thinner than previously reported, and regions forming large sheets. In addition, our data show a prevalent subpopulation of filaments exhibiting a lumpy slab morphology in both aggregates, supportive of the polyQ core model. This provides a basis for future cryoET studies of various aggregated mHTT and polyQ constructs to improve their structure-based modeling as well as their identification in cells without fusion tags.


Asunto(s)
Tomografía con Microscopio Electrónico/métodos , Exones/genética , Proteína Huntingtina/genética , Mutación , Péptidos/genética , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/ultraestructura , Enfermedad de Huntington/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Agregado de Proteínas , Agregación Patológica de Proteínas , Conformación Proteica
3.
Int J Mol Sci ; 22(6)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809335

RESUMEN

The relationship between protein motions (i.e., dynamics) and enzymatic function has begun to be explored in ß-lactamases as a way to advance our understanding of these proteins. In a recent study, we analyzed the dynamic profiles of TEM-1 (a ubiquitous class A ß-lactamase) and several ancestrally reconstructed homologues. A chief finding of this work was that rigid residues that were allosterically coupled to the active site appeared to have profound effects on enzyme function, even when separated from the active site by many angstroms. In the present work, our aim was to further explore the implications of protein dynamics on ß-lactamase function by altering the dynamic profile of TEM-1 using computational protein design methods. The Rosetta software suite was used to mutate amino acids surrounding either rigid residues that are highly coupled to the active site or to flexible residues with no apparent communication with the active site. Experimental characterization of ten designed proteins indicated that alteration of residues surrounding rigid, highly coupled residues, substantially affected both enzymatic activity and stability; in contrast, native-like activities and stabilities were maintained when flexible, uncoupled residues, were targeted. Our results provide additional insight into the structure-function relationship present in the TEM family of ß-lactamases. Furthermore, the integration of computational protein design methods with analyses of protein dynamics represents a general approach that could be used to extend our understanding of the relationship between dynamics and function in other enzyme classes.


Asunto(s)
Proteínas Mutantes/genética , Conformación Proteica , Ingeniería de Proteínas , beta-Lactamasas/genética , Aminoácidos/genética , Bacterias/enzimología , Sitios de Unión/genética , Dominio Catalítico/genética , Biología Computacional , Estabilidad de Enzimas/genética , Escherichia coli/enzimología , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas Mutantes/ultraestructura , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , beta-Lactamasas/ultraestructura
4.
J Biol Chem ; 296: 100333, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33508321

RESUMEN

ß2-Microglobulin (ß2m) is the causative protein of dialysis-related amyloidosis. Its unfolding mainly proceeds along the pathway of NC →UC ⇄ UT, whereas refolding follows the UT → IT (→NT) →NC pathway, in which N, I, and U are the native, intermediate, and unfolded states, respectively, with the Pro32 peptidyl-prolyl bond in cis or trans conformation as indicated by the subscript. It is noted that the IT state is a putative amyloidogenic precursor state. Several aggregation-prone variants of ß2m have been reported to date. One of these variants is D76N ß2m, which is a naturally occurring amyloidogenic mutant. To elucidate the molecular mechanisms contributing to the enhanced amyloidogenicity of the mutant, we investigated the equilibrium and kinetic transitions of pressure-induced folding/unfolding equilibria in the wild type and D76N mutant by monitoring intrinsic tryptophan and 1-anilino-8-naphthalene sulfonate fluorescence. An analysis of kinetic data revealed that the different folding/unfolding behaviors of the wild type and D76N mutant were due to differences in the activation energy between the unfolded and the intermediate states as well as stability of the native state, leading to more rapid accumulation of IT state for D76N in the refolding process. In addition, the IT state was found to assume more hydrophobic nature. These changes induced the enhanced amyloidogenicity of the D76N mutant and the distinct pathogenic symptoms of patients. Our results suggest that the stabilization of the native state will be an effective approach for suppressing amyloid fibril formation of this mutant.


Asunto(s)
Amiloidosis/genética , Proteínas Mutantes/química , Agregado de Proteínas/genética , Microglobulina beta-2/química , Amiloidosis/metabolismo , Amiloidosis/patología , Naftalenosulfonatos de Anilina/química , Humanos , Cinética , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Presión , Pliegue de Proteína , Diálisis Renal/efectos adversos , Transducción de Señal/genética , Triptófano/química , Microglobulina beta-2/genética , Microglobulina beta-2/ultraestructura
5.
Nature ; 590(7847): 666-670, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33442061

RESUMEN

A non-enveloped virus requires a membrane lesion to deliver its genome into a target cell1. For rotaviruses, membrane perforation is a principal function of the viral outer-layer protein, VP42,3. Here we describe the use of electron cryomicroscopy to determine how VP4 performs this function and show that when activated by cleavage to VP8* and VP5*, VP4 can rearrange on the virion surface from an 'upright' to a 'reversed' conformation. The reversed structure projects a previously buried 'foot' domain outwards into the membrane of the host cell to which the virion has attached. Electron cryotomograms of virus particles entering cells are consistent with this picture. Using a disulfide mutant of VP4, we have also stabilized a probable intermediate in the transition between the two conformations. Our results define molecular mechanisms for the first steps of the penetration of rotaviruses into the membranes of target cells and suggest similarities with mechanisms postulated for other viruses.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Replegamiento Proteico , Rotavirus/metabolismo , Rotavirus/ultraestructura , Internalización del Virus , Animales , Antígenos Virales/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Disulfuros/química , Disulfuros/metabolismo , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Conformación Proteica , Proteínas de Unión al ARN/metabolismo , Rotavirus/química , Rotavirus/fisiología , Proteínas no Estructurales Virales/metabolismo , Virión/química , Virión/metabolismo , Virión/ultraestructura
6.
Cell Mol Life Sci ; 78(4): 1523-1544, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32666307

RESUMEN

Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may affect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the effect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an effort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol efflux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol efflux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Specifically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol efflux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure-function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Apolipoproteína A-I/genética , Enfermedades Cardiovasculares/genética , HDL-Colesterol/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/metabolismo , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/ultraestructura , Enfermedades Cardiovasculares/patología , Movimiento Celular/genética , HDL-Colesterol/metabolismo , HDL-Colesterol/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/patología , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Cetocolesteroles/genética , Cetocolesteroles/metabolismo , Lipoproteínas HDL/genética , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/ultraestructura , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación/genética , Receptores Depuradores de Clase E/genética , Receptores Depuradores de Clase E/metabolismo , Relación Estructura-Actividad , Termodinámica
7.
J Struct Biol ; 211(2): 107543, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522553

RESUMEN

The effects of a single residue substitution on the protein backbone are frequently quite small and there are many other potential sources of structural variation for protein. We present here a methodology considering different sources of distortions in order to isolate the very effect of the mutation. To validate our methodology, we consider a well-studied family with many single mutants: the human lysozyme. Most of the perturbations are expected to be at the very localisation of the mutation, but in many cases the effects are propagated at long range. We show that the distances between the mutated residue and the 5% most disturbed residues exponentially decreases. One third of the affected residues are in direct contact with the mutated position; the remaining two thirds are potential allosteric effects. We confirm the reliability of the residues identified as significantly perturbed by comparing our results to experimental studies. We confirm with the present method all the previously identified perturbations. This study shows that mutations have long-range impact on protein backbone that can be detected, although the displacement of the affected atoms is small.


Asunto(s)
Muramidasa/ultraestructura , Proteínas Mutantes/ultraestructura , Conformación Proteica , Proteínas/ultraestructura , Secuencia de Aminoácidos/genética , Humanos , Muramidasa/química , Muramidasa/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación/genética , Mutación Puntual/genética , Proteínas/química , Proteínas/genética
8.
Nat Commun ; 11(1): 2643, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32457390

RESUMEN

Amyloid aggregation of α-synuclein (α-syn) is closely associated with Parkinson's disease (PD) and other synucleinopathies. Several single amino-acid mutations (e.g. E46K) of α-syn have been identified causative to the early onset of familial PD. Here, we report the cryo-EM structure of an α-syn fibril formed by N-terminally acetylated E46K mutant α-syn (Ac-E46K). The fibril structure represents a distinct fold of α-syn, which demonstrates that the E46K mutation breaks the electrostatic interactions in the wild type (WT) α-syn fibril and thus triggers the rearrangement of the overall structure. Furthermore, we show that the Ac-E46K fibril is less resistant to harsh conditions and protease cleavage, and more prone to be fragmented with an enhanced seeding capability than that of the WT fibril. Our work provides a structural view to the severe pathology of the PD familial mutation E46K of α-syn and highlights the importance of electrostatic interactions in defining the fibril polymorphs.


Asunto(s)
Proteínas Mutantes/química , Proteínas Mutantes/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/genética , Acetilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Amiloide/química , Amiloide/genética , Amiloide/ultraestructura , Microscopía por Crioelectrón , Humanos , Microscopía de Fuerza Atómica , Modelos Moleculares , Proteínas Mutantes/ultraestructura , Mutación Missense , Conformación Proteica , Estabilidad Proteica , Electricidad Estática , alfa-Sinucleína/ultraestructura
9.
J Biol Chem ; 295(7): 1915-1925, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31924658

RESUMEN

Chitin degradation is important for biomass conversion and has potential applications for agriculture, biotechnology, and the pharmaceutical industry. Chitinase A from the Gram-negative bacterium Serratia marcescens (SmChiA) is a processive enzyme that hydrolyzes crystalline chitin as it moves linearly along the substrate surface. In a previous study, the catalytic activity of SmChiA against crystalline chitin was found to increase after the tryptophan substitution of two phenylalanine residues (F232W and F396W), located at the entrance and exit of the substrate binding cleft of the catalytic domain, respectively. However, the mechanism underlying this high catalytic activity remains elusive. In this study, single-molecule fluorescence imaging and high-speed atomic force microscopy were applied to understand the mechanism of this high-catalytic-activity mutant. A reaction scheme including processive catalysis was used to reproduce the properties of SmChiA WT and F232W/F396W, in which all of the kinetic parameters were experimentally determined. High activity of F232W/F396W mutant was caused by a high processivity and a low dissociation rate constant after productive binding. The turnover numbers for both WT and F232W/F396W, determined by the biochemical analysis, were well-replicated using the kinetic parameters obtained from single-molecule imaging analysis, indicating the validity of the reaction scheme. Furthermore, alignment of amino acid sequences of 258 SmChiA-like proteins revealed that tryptophan, not phenylalanine, is the predominant amino acid at the corresponding positions (Phe-232 and Phe-396 for SmChiA). Our study will be helpful for understanding the kinetic mechanisms and further improvement of crystalline chitin hydrolytic activity of SmChiA mutants.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Quitinasas/ultraestructura , Imagen Molecular , Proteínas Mutantes/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Catálisis , Dominio Catalítico/genética , Quitina/química , Quitina/metabolismo , Quitinasas/química , Quitinasas/genética , Hidrólisis , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Fenilalanina/metabolismo , Imagen Individual de Molécula , Especificidad por Sustrato , Propiedades de Superficie , Triptófano/metabolismo
10.
Biophys J ; 117(9): 1626-1641, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31607389

RESUMEN

Stress-induced unfolding and fibrillation of insulin represent serious medical and biotechnological problems. Despite many attempts to elucidate the molecular mechanisms of insulin fibrillation, there is no general agreement on how this process takes place. Several previous studies suggested the importance of the C-terminal region of B-chain in this pathway. Therefore, we generated the T30R and K29R/T30R mutants of insulin B-chain. Recombinantly produced wild-type A-chain and mutant B-chains were combined efficiently in the presence of chaperone αB-crystallin. The mutant B-chains along with the control wild-type insulin were used in a wide range of parallel experiments to compare their fibrillation kinetics, morphology of fibrils, and forces driving the fibril formation. The mutant insulins and their B-chains displayed significant resistance against stress-induced fibrillation, particularly at the nucleation stage, suggesting that the B-chain might be influencing the insulin fibrillation. The fact that the different mature insulins formed larger fibrillar bundles compared to those formed by their B-chains alone suggested the role of A-chain in the lateral association of the insulin fibrils. Overall, in addition to the N-terminal region of the B-chain, which was shown to serve as an important regulator of insulin fibrillation, the C-terminal region of this peptide is also crucial for the control of fibrillation, likely serving as an attachment site engaged in the formation of the nucleus and protofibril. Finally, two mutated insulin variants examined in this study might be of interest to the pharmaceutical sector as, to our knowledge, novel intermediate-acting insulin analogs because of their suitable biological activity and improved stability against stress-induced fibrillation.


Asunto(s)
Insulina/química , Insulina/genética , Mutación/genética , Ingeniería de Proteínas , Secuencia de Aminoácidos , Amiloide/química , Humanos , Cinética , Proteínas Mutantes/química , Proteínas Mutantes/ultraestructura , Multimerización de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química
11.
Nano Lett ; 19(5): 3104-3114, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30950626

RESUMEN

Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas Mutantes/ultraestructura , Bombas de Protones/ultraestructura , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Campos Electromagnéticos , Transporte Iónico/genética , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Proteínas Mutantes/química , Proteínas Mutantes/genética , Nanotecnología/métodos , Conformación Proteica , Bombas de Protones/química , Membrana Púrpura/química , Membrana Púrpura/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
12.
PLoS One ; 14(1): e0210963, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30645640

RESUMEN

The formation of hemostatic plugs at sites of vascular injury crucially involves the multimeric glycoprotein von Willebrand factor (VWF). VWF multimers are linear chains of N-terminally linked dimers. The latter are formed from monomers via formation of the C-terminal disulfide bonds Cys2771-Cys2773', Cys2773-Cys2771', and Cys2811-Cys2811'. Mutations in VWF that impair multimerization can lead to subtype 2A of the bleeding disorder von Willebrand Disease (VWD). Commonly, the multimer size distribution of VWF is assessed by electrophoretic multimer analysis. Here, we present atomic force microscopy (AFM) imaging as a method to determine the size distribution of VWF variants by direct visualization at the single-molecule level. We first validated our approach by investigating recombinant wildtype VWF and a previously studied mutant (p.Cys1099Tyr) that impairs N-terminal multimerization. We obtained excellent quantitative agreement with results from earlier studies and with electrophoretic multimer analysis. We then imaged specific mutants that are known to exhibit disturbed C-terminal dimerization. For the mutants p.Cys2771Arg and p.Cys2773Arg, we found the majority of monomers (87 ± 5% and 73 ± 4%, respectively) not to be C-terminally dimerized. While these results confirm that Cys2771 and Cys2773 are crucial for dimerization, they additionally provide quantitative information on the mutants' different abilities to form alternative C-terminal disulfides for residual dimerization. We further mutated Cys2811 to Ala and found that only 23 ± 3% of monomers are not C-terminally dimerized, indicating that Cys2811 is structurally less important for dimerization. Furthermore, for mutants p.Cys2771Arg, p.Cys2773Arg, and p.Cys2811Ala we found 'even-numbered' non-native multimers, i.e. multimers with monomers attached on both termini; a multimer species that cannot be distinguished from native multimers by conventional multimer analysis. Summarizing, we demonstrate that AFM imaging can provide unique insights into VWF processing defects at the single-molecule level that cannot be gained from established methods of multimer analysis.


Asunto(s)
Microscopía de Fuerza Atómica/métodos , Imagen Individual de Molécula/métodos , Factor de von Willebrand/química , Factor de von Willebrand/ultraestructura , Sustitución de Aminoácidos , Cisteína/química , Dimerización , Células HEK293 , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Mutación Missense , Tamaño de la Partícula , Multimerización de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/ultraestructura , Enfermedades de von Willebrand/sangre , Enfermedades de von Willebrand/genética , Factor de von Willebrand/genética
13.
Biochem Biophys Res Commun ; 508(3): 729-734, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30528390

RESUMEN

Alpha-synuclein (a-syn) aggregation in brain is implicated in several synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). Until date, at least six disease-associated mutations in a-syn (namely A30P, E46K, H50Q, G51D, A53T, and A53E) are known to cause dominantly inherited familial forms of synucleinopathies. Previous studies using recombinant proteins have reported that a subset of disease-associated mutants show higher aggregation propensities and form spectroscopically distinguishable aggregates compared to wild-type (WT). However, morphological and biochemical comparison of the aggregates for all disease-associated a-syn mutants have not yet been performed. In this study, we performed electron microscopic examination, guanidinium hydrochloride (GdnHCl) denaturation, and protease digestion to classify the aggregates from their respective point mutations. Using electron microscopy we observed variations of amyloid fibrillar morphologies among the aggregates of a-syn mutants, mainly categorized into two groups: twisted fibrils observed for both WT and E46K while straight fibrils for the other mutants. GdnHCl denaturation experiments revealed the a-syn mutants except for E46K were more resistant than WT against the denaturation. Mass spectrometry analysis of protease-treated aggregates showed a variety of protease-resistant cores, which may correspond to their morphological properties. The difference of their properties could be implicated in the clinicopathological difference of synucleinopathies with those mutations.


Asunto(s)
Proteínas Mutantes/metabolismo , Enfermedad de Parkinson/metabolismo , Agregado de Proteínas , alfa-Sinucleína/metabolismo , Animales , Endopeptidasa K/metabolismo , Humanos , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/ultraestructura , Mutación/genética , alfa-Sinucleína/química , alfa-Sinucleína/ultraestructura
14.
Nature ; 563(7731): 426-430, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405239

RESUMEN

ABCG2 is a transporter protein of the ATP-binding-cassette (ABC) family that is expressed in the plasma membrane in cells of various tissues and tissue barriers, including the blood-brain, blood-testis and maternal-fetal barriers1-4. Powered by ATP, it translocates endogenous substrates, affects the pharmacokinetics of many drugs and protects against a wide array of xenobiotics, including anti-cancer drugs5-12. Previous studies have revealed the architecture of ABCG2 and the structural basis of its inhibition by small molecules and antibodies13,14. However, the mechanisms of substrate recognition and ATP-driven transport are unknown. Here we present high-resolution cryo-electron microscopy (cryo-EM) structures of human ABCG2 in a substrate-bound pre-translocation state and an ATP-bound post-translocation state. For both structures, we used a mutant containing a glutamine replacing the catalytic glutamate (ABCG2EQ), which resulted in reduced ATPase and transport rates and facilitated conformational trapping for structural studies. In the substrate-bound state, a single molecule of estrone-3-sulfate (E1S) is bound in a central, hydrophobic and cytoplasm-facing cavity about halfway across the membrane. Only one molecule of E1S can bind in the observed binding mode. In the ATP-bound state, the substrate-binding cavity has collapsed while an external cavity has opened to the extracellular side of the membrane. The ATP-induced conformational changes include rigid-body shifts of the transmembrane domains, pivoting of the nucleotide-binding domains (NBDs), and a change in the relative orientation of the NBD subdomains. Mutagenesis and in vitro characterization of transport and ATPase activities demonstrate the roles of specific residues in substrate recognition, including a leucine residue that forms a 'plug' between the two cavities. Our results show how ABCG2 harnesses the energy of ATP binding to extrude E1S and other substrates, and suggest that the size and binding affinity of compounds are important for distinguishing substrates from inhibitors.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/ultraestructura , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/ultraestructura , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
15.
Nature ; 560(7717): 258-262, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069048

RESUMEN

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Asunto(s)
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Dinamina I/metabolismo , Dinamina I/ultraestructura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Dominios Proteicos , Multimerización de Proteína
16.
Nature ; 557(7703): 62-67, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29695864

RESUMEN

Gasdermins mediate inflammatory cell death after cleavage by caspases or other, unknown enzymes. The cleaved N-terminal fragments bind to acidic membrane lipids to form pores, but the mechanism of pore formation remains unresolved. Here we present the cryo-electron microscopy structures of the 27-fold and 28-fold single-ring pores formed by the N-terminal fragment of mouse GSDMA3 (GSDMA3-NT) at 3.8 and 4.2 Å resolutions, and of a double-ring pore at 4.6 Å resolution. In the 27-fold pore, a 108-stranded anti-parallel ß-barrel is formed by two ß-hairpins from each subunit capped by a globular domain. We identify a positively charged helix that interacts with the acidic lipid cardiolipin. GSDMA3-NT undergoes radical conformational changes upon membrane insertion to form long, membrane-spanning ß-strands. We also observe an unexpected additional symmetric ring of GSDMA3-NT subunits that does not insert into the membrane in the double-ring pore, which may represent a pre-pore state of GSDMA3-NT. These structures provide a basis that explains the activities of several mutant gasdermins, including defective mutants that are associated with cancer.


Asunto(s)
Microscopía por Crioelectrón , Proteínas/química , Proteínas/ultraestructura , Animales , Membrana Celular/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lípidos de la Membrana/metabolismo , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/ultraestructura , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/ultraestructura , Neoplasias/genética , Perforina/química , Perforina/metabolismo , Proteínas de Unión a Fosfato , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Proteínas/genética , Proteínas/metabolismo , Relación Estructura-Actividad
17.
Nature ; 553(7689): 521-525, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342139

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer that commonly affects patients with AIDS and which is endemic in sub-Saharan Africa. The KSHV capsid is highly pressurized by its double-stranded DNA genome, as are the capsids of the eight other human herpesviruses. Capsid assembly and genome packaging of herpesviruses are prone to interruption and can therefore be targeted for the structure-guided development of antiviral agents. However, herpesvirus capsids-comprising nearly 3,000 proteins and over 1,300 Å in diameter-present a formidable challenge to atomic structure determination and functional mapping of molecular interactions. Here we report a 4.2 Å resolution structure of the KSHV capsid, determined by electron-counting cryo-electron microscopy, and its atomic model, which contains 46 unique conformers of the major capsid protein (MCP), the smallest capsid protein (SCP) and the triplex proteins Tri1 and Tri2. Our structure and mutagenesis results reveal a groove in the upper domain of the MCP that contains hydrophobic residues that interact with the SCP, which in turn crosslinks with neighbouring MCPs in the same hexon to stabilize the capsid. Multiple levels of MCP-MCP interaction-including six sets of stacked hairpins lining the hexon channel, disulfide bonds across channel and buttress domains in neighbouring MCPs, and an interaction network forged by the N-lasso domain and secured by the dimerization domain-define a robust capsid that is resistant to the pressure exerted by the enclosed genome. The triplexes, each composed of two Tri2 molecules and a Tri1 molecule, anchor to the capsid floor via a Tri1 N-anchor to plug holes in the MCP network and rivet the capsid floor. These essential roles of the MCP N-lasso and Tri1 N-anchor are verified by serial-truncation mutageneses. Our proof-of-concept demonstration of the use of polypeptides that mimic the smallest capsid protein to inhibit KSHV lytic replication highlights the potential for exploiting the interaction hotspots revealed in our atomic structure to develop antiviral agents.


Asunto(s)
Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/ultraestructura , Mutagénesis , Replicación Viral , Cápside/química , Cápside/metabolismo , Cápside/ultraestructura , Proteínas de la Cápside/química , Proteínas de la Cápside/ultraestructura , Disulfuros/metabolismo , Diseño de Fármacos , Herpesvirus Humano 8/química , Herpesvirus Humano 8/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Mutación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estabilidad Proteica , Replicación Viral/genética
18.
Nat Commun ; 8(1): 781, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974687

RESUMEN

Nipah virus is an emergent paramyxovirus that causes deadly encephalitis and respiratory infections in humans. Two glycoproteins coordinate the infection of host cells, an attachment protein (G), which binds to cell surface receptors, and a fusion (F) protein, which carries out the process of virus-cell membrane fusion. The G protein binds to ephrin B2/3 receptors, inducing G conformational changes that trigger F protein refolding. Using an optical approach based on second harmonic generation, we show that monomeric and dimeric receptors activate distinct conformational changes in G. The monomeric receptor-induced changes are not detected by conformation-sensitive monoclonal antibodies or through electron microscopy analysis of G:ephrinB2 complexes. However, hydrogen/deuterium exchange experiments confirm the second harmonic generation observations and reveal allosteric changes in the G receptor binding and F-activating stalk domains, providing insights into the pathway of receptor-activated virus entry.Nipah virus causes encephalitis in humans. Here the authors use a multidisciplinary approach to study the binding of the viral attachment protein G to its host receptor ephrinB2 and show that monomeric and dimeric receptors activate distinct conformational changes in G and discuss implications for receptor-activated virus entry.


Asunto(s)
Efrina-B2/metabolismo , Virus Nipah/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Regulación Alostérica , Anticuerpos Monoclonales/metabolismo , Medición de Intercambio de Deuterio , Células HEK293 , Humanos , Espectrometría de Masas , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Coloración Negativa , Unión Proteica , Multimerización de Proteína
19.
J Am Chem Soc ; 139(38): 13466-13475, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28863262

RESUMEN

Self-assembly of plasma membrane-associated Ras GTPases has major implications to the regulation of cell signaling. However, the structural basis of homo-oligomerization and the fractional distribution of oligomeric states remained undetermined. We have addressed these issues by deciphering the distribution of dimers and higher-order oligomers of K-Ras4B, the most frequently mutated Ras isoform in human cancers. We focused on the constitutively active G12V K-Ras and two of its variants, K101E and K101C/E107C, which respectively destabilize and stabilize oligomers. Using raster image correlation spectroscopy and number and brightness analysis combined with fluorescence recovery after photobleaching, fluorescence correlation spectroscopy and electron microscopy in live cells, we show that G12V K-Ras exists as a mixture of monomers, dimers and larger oligomers, while the K101E mutant is predominantly monomeric and K101C/E107C is dominated by oligomers. This observation demonstrates the ability of K-Ras to exist in multiple oligomeric states whose population can be altered by interfacial mutations. Using molecular modeling and simulations we further show that K-Ras uses two partially overlapping interfaces to form compositionally and topologically diverse oligomers. Our results thus provide the first detailed insight into the multiplicity, structure, and membrane organization of K-Ras homomers.


Asunto(s)
Membrana Celular/metabolismo , Multimerización de Proteína , Proteínas ras/química , Proteínas ras/metabolismo , Animales , Hominidae , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Proteínas ras/genética , Proteínas ras/ultraestructura
20.
Elife ; 62017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28169832

RESUMEN

The eukaryotic pre-initiation complex (PIC) bearing the eIF2·GTP·Met-tRNAiMet ternary complex (TC) scans the mRNA for an AUG codon in favorable context. AUG recognition evokes rearrangement of the PIC from an open, scanning to a closed, arrested conformation. Cryo-EM reconstructions of yeast PICs suggest remodeling of the interface between 40S protein Rps5/uS7 and eIF2α between open and closed states; however, its importance was unknown. uS7 substitutions disrupting eIF2α contacts favored in the open complex increase initiation at suboptimal sites, and uS7-S223D stabilizes TC binding to PICs reconstituted with a UUG start codon, indicating inappropriate rearrangement to the closed state. Conversely, uS7-D215 substitutions, perturbing uS7-eIF2α interaction in the closed state, confer the opposite phenotypes of hyperaccuracy and (for D215L) accelerated TC dissociation from reconstituted PICs. Thus, remodeling of the uS7/eIF2α interface appears to stabilize first the open, and then the closed state of the PIC to promote accurate AUG selection in vivo.


Asunto(s)
Codón Iniciador/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/ultraestructura , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Sustitución de Aminoácidos , Microscopía por Crioelectrón , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestructura , Conformación Proteica , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...